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Abstract

The relationship between the compact complex and

real variable 2-D FDTD methods used for the

analysis of guided modes of arbitrary anisotropic

dielectric waveguides is investigated. Situations for

the permittivity tensor with different non-zero

elements are discussed. It is found that in certain

cases the complex 2-D FDTD method cannot be

reduced to the real variable one. This, in turn,

reveals that the real variable 2-D FDTD method has

limitation when applied to arbitrary anisotropic

dielectric waveguides. In addition, numerical results

show that using the complex impulse in the

excitation is not an essential condition, even for a

purely complex 2-D FDTD method.

Introduction: Since the two-dimensional Finite

Difference Time Domain (FDTD) method was

developed [1, 2], it has been widely used for the

analysis of the guided modes of different

waveguides. Reviewing the development history of

the 2-D FDTD technique, an original 2-D FDTD

approach based on a non-truly 2-D mesh (i.e., a two-

dimensional mesh in the cross-section combined

with one-half mesh in the propagating direction of

the guide) was first developed [1]. In parallel, a

compact complex 2-D FDTD method, which exactly

uses a truly 2-D mesh and therefore significantly

improves the efficiency of the non-truly 2-D FDTD

approach, was proposed [2] and its stability was

further investigated in [3]. Due to the attractive

feature of the compact 2-D FDTD technique [2, 3],

nowadays it is being used more than the original

method [1]. Nevertheless, the compact 2-D FDTD

approaches proposed in [2, 3] are based on the
processing of the complex variable and such a

processing was claimed [4] as one of the

disadvantages of the method. In order to overcome

this disadvantage (i.e., avoiding the complex

variable) and to further improve the efficiency of the

compact complex 2-D FDTD method, a compact

real variable 2-D FDTD algorithm was developed

[4]. The advantage of the real variable 2-D FDTD

method [4] over the complex 2-D FDTD method [2]

is obvious since only half of the computer memory

and CPU time are required in the real variable

algorithm. Although it was claimed in [4] that the

real variable 2-D FDTD technique can be applied to

arbitrary anisotropic cases, we find that this is not

always true. Theoretical analysis and numerical

results presented in this paper show that, in certain

circumstances (e.g., when the tangential field

components (EX and/or EY) are coupled with the

longitudinal field component (E=)), the complex 2-D

FDTD method cannot be reduced to (or replaced by)

the real variable 2-D FDTD method, thus the

complex 2-D FDTD method has to be employed in

these cases; and in this paper such a complex 2-D

FDTD method is regarded as the purely complex 2-

D FDTD method.

Theory: Assuming that for the guided modes

supported by an anisotropic dielectric waveguide

with an arbitrary relative permittivity tensor, [s], the

field variation along the axis of the waveguide, z, is

of the form exp(-j ~z), where ~ is the propagation

constant and j = ~. Thus, Maxwell’s equations

can be written as:
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between the (complex) electric field (E) and the

(complex) electric displacement (D) is of the form:
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where SOis the permittivity in vacuum, and [s]-’ is

(1.2b)

(1.3b)

(1.4b)
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vacuum; the

superscripts ‘re’ and ‘ im’ represent the real part and

the imaginary part of the field components,

respectively; and both the real part and the

imaginary part are real variables. To easily handle

arbitrary anisotropic dielectric media, the magnetic

field, H, the electric field, E, and the electric

displacement, D, are together involved in Eq. (l).

Because only anisotropic dielectric materials are
considered here, all elements of [e] are real and [E]

is a symmetric matrix. Therefore, the relationship

the inverse matrix of [G]. In what follows, the

relationship between the compact complex and real

variable 2-D FDTD methods will be discussed for

three possible anisotropic dielectric cases.

Case 1: The permittivity tensor has only the

diagonal elements, i.e., sij = O for i # j. By

combining Eqs. (1) with (2), one can see that the 12

equations in Eq. (1) can be separated into two

independent groups A and B (the real variable field

components (H;, H?, H~m, E$’, E:, E~) are

involved in group A, whereas in group B the real

variable field components ( H:, H;, H;, E:,

E;, E~m ) are concerned) since these two groups

are not coupled. Because of such an independent

behavior, for the guided modes supported by this

special anisotropic waveguide it is unnecessary to

solve all 12 equations of Equation (1). Alternatively,

the propagation characteristics of the guided modes

can be obtained by using either group A or group B,

i.e., for this case the complex 2-D FDTD method [2]

can be reduced to the real variable 2-D FDTD

method [4].

Case 2: If an off diagonal case, i.e., Exy # O and e,, =

SYZ= O, is considered, then the 12 equations in Eq.

(1) can still be separated into the two independent
groups A and B. Thus, for the same reason as

explained in Case 1, the complex 2-D FDTD method

0-7803-4603-6/97/$5.00 (c) IEEE



[2] can again be reduced to the real variable 2-D

FDTD method [4] for Case 2.

Case 3: However, if another off diagonal situations

[5], e.g., either both 8X=and &,Zare not zero or one of

them is non-zero (noting that in this case the choice

of &,Yis arbitrary - it can be either zero or non-zero),

are considered, then the real variable 2-D FDTD

method is no lorzger valid. This is due to the fact

that in this case the tangential field components (EX

and/or EY) are coupled with the longitudinal field

component (EZ). Thus, once Eqs. (1) and (2) are

combined, the 12 equations in Eq. (1) cawzot be

separated into two independent groups. This

certainly indicates that for the situations considered

in Case 3 the complex 2-D FDTD method [2] carzrzot

be replaced by the real variable 2-D FDTD method

[4], i.e., the complex 2-D FDTD method has to be

employed.

Numerical Validation: Because the validation for

Case 1 and Case 2 has been done in [4], therefore

only Case 3 will be considered here. In order to

prove the above theory, an anisotropic square

waveguide (W = t) whose optics axis (c) lies in the

yz-plane at an angle (1 = 45° from the z axis (in this

case eYz # O and thus it belongs to Case 3) is

considered [5]. Even through for this example the

purely complex 2-D FDTD method has to be

employed, we use only a real impulse (e.g.,

D: xexp(-(nAt-tO)2/T2) is used for the E~l mode;

and D; xexp(-(nAt-tO)2/T2) is used for the E~l

mode), instead of the complex impulse [2, 3], in the

excitation. Figure 1 shows the dispersion

characteristics of the E~l and E~l modes of the

anisotropic square waveguide obtained from the

complex 2-D FDTD method. A comparison with [5]

shows an excellent agreement. To further

demonstrate the theory developed above, the

contour plot of the actual EY (= I E; + j E~ 1) field

component is illustrated in Fig. 2; whereas the

surface plots of the real (E?) and imaginary ( E~m )

parts of the E, field component of the E~l mode are

shown in Figs. 3(a) and 3(b), respectively. It can be
seen from Figs. 3(a) and 3(b) that the imaginary part

of the field component can still be obtained even

only the real impulse is used in the excitation.

Furthermore, it is not surprised that the profile of the

actual EY field component shown in Fig. 2 is not

symmetric along the y direction because for the case

under consideration the optics axis lies in the yz-

plane and &Yz# O [5]. Finally, if one examines the

distributions of the E; and E: field components

shown in Figs. 3 (a) and 3(b), due to the fact that the

E, field component is strongly coupled with the E=

field component, significant difference between

them is observed.

Conclusions: By extending the 2-D FDTD method

to arbitrary anisotropic dielectric materials, the

relationship between the complex 2-D FDTD

method and the real variable 2-D FDTD method is

investigated for anisotropic waveguides with

arbitrary tensor permittivity. It was found that, for

the cases that the tangential field components (EX

and/or EY) are coupled with the longitudinal field

com-ponent (EZ), the complex 2-D FDTD method

has to be employed, i.e., in these cases the complex

2-D FDTD method cannot be reduced to the real

variable 2-D FDTD method. On the other hand,

numerical results indicate that the real impulse can

still be used in the excitation even for the purely

complex 2-D FDTD method, and thus, the efficiency

of the purely complex algorithm is further enhanced.

By clearing up the relationship between the compact

complex and real variable 2-D FDTD methods in

our mind, as a consequence, the compact 2-D FDTD

technique is now ready to study guide modes of

arbitrary anisotropic dielectric waveguides.
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Figure 1. Dispersion characteristics of the E~l and E~l

modes of the square anisotropic waveguide. Ax = Ay =

Wl12, and the total mesh dimension is 52x52.
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Figure 2. Contour plot of the actual EY field component of

the E~l mode of the waveguide (W= t = 2.0 ~m) at (3=

7.416 x10Gm-1.
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Figure 3(a). Surface plot of the E; field component of Figure 3(b). Surface plot of the E: field component of

the E~l mode of the waveguide. the E~l mode of the waveguide.
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